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Abstract. Generalized Hamiltonian systems derived from degenerate Lagrangians are
presented as implicit differential equations rather than families of Hamiltonian vector fields
restricted to constraint subsets of the phase space. Systems considered are more general than
the ones described by Dirac—they are generated by Morse families of functions and not by
constrained Hamiltonians. Integrability of such systems is analysed. Examples are given.

1. Introduction

First attempts to deal with Hamiltonian systems generated by degenerate Lagrangians
were made by Dirac and Bergmann [2]. A complete solution of the problem of singular
Lagrangians was not given—the Legendre transformation for singular Lagrangians was not
constructed. A complete solution of the problem was found in 1974 [9]. Generalized
Hamiltonian systems were introduced as implicit differential equations and the Legendre
transformation for singular Lagrangians was defined. It turns out that the Legendre
transformation applied to a singular Lagrangian rarely results in a generalized Hamiltonian
system characterized by a Hamiltonian defined on a constraint submanifold considered
by Dirac. More general Hamiltonian systems have to be considered. These systems
introduced in [9] are calledgeneralized Dirac systemsin the present paper. Examples of
integrable generalized Dirac systems were given in [7]. In the present paper an algorithm for
extracting the integrable part of an implicit differential equation is formulated and adapted
to generalized Dirac systems generated by Morse families. This work follows an earlier
paper on integrability of Dirac systems [6]. There is a minor change in the formulation
of the general integrability algorithm in section 6 and the integrability of Dirac systems is
discussed in terms of Morse families. Few non-integrable mechanical systems are known.
Only one of our examples in the last section is derived from physics. Implicit differential
equations related to generalized Dirac systems were introduced by Marle [5] and Dazord
[1].

2. Preliminary definitions

The reader is assumed to be familiar with basic concepts of differential geometry. We review
below the definitions of concepts fundamental for the discussion of implicit differential
equations and their integrability.
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The tangent bundleof a differential manifoldM of dimensionm is a differential
manifold TM of dimension 2m. The underlying set ofTM is the set of equivalence classes
of differentiable curves inM called vectors. Two curvesγ : I → M and γ ′: I ′ → M are
equivalent if

γ ′(0) = γ (0) (1)

and

D(f ◦ γ ′)(0) = D(f ◦ γ )(0) (2)

for each differentiable functionf : M → R. The setsI andI ′ are open neighbourhoods of
0 ∈ R. The symbol D denotes the first derivative of a function. The equivalence class of a
curveγ : I → M is denoted bytγ (0). The mapping

tγ : R → TM

: s 7→ tγ (s + ·)(0) (3)

is called thetangent prolongationof the curveγ . The mapping

τM : TM → M

: tγ (0) 7→ γ (0) (4)

is called thetangent bundle projection.
Let η: M → N be a differentiable mapping. The mapping

Tη: TM → TN (5)

defined by

Tη(tγ (0)) = t(η ◦ γ )(0) (6)

is called thetangent mappingof η.
A vector v ∈ TM is said to betangent to a setC ⊂ M if there is a representative

γ : I → M with im(γ ) ⊂ C. The set of all vectors tangent toC is denoted byTC.

3. Submanifolds of symplectic manifolds

Let (P, ω) be a symplectic manifold and letβ: TP → T∗
P be the natural isomorphism

characterized by

〈w, β(v)〉 = 〈v ∧ w, ω〉 (7)

for eachv ∈ TP and eachw ∈ TP such thatτP (w) = τP (v). Let V ⊂ TpP be a vector
subspace. The symbolTpP denotes the setτ−1

p (p). In general, the fibreη−1(p) of a
fibration η: Y → P over a pointp will be denoted byYp. The polar V ◦ is the subspace

{q ∈ T∗
pP ; ∀v∈V 〈v, q〉 = 0}. (8)

We denote byV ¶ the symplectic polar

β−1(V ◦) = {w ∈ TpP ; ∀v∈V 〈v ∧ w, ω〉 = 0}. (9)

If C ⊂ P is a submanifold, thenT¶
C will denote the set⋃

p∈C

(TpC)¶. (10)

We recall that a submanifoldC ⊂ P is said to beisotropic if T¶
C ⊃ TC. A submanifold

C ⊂ P is said to beco-isotropic if T¶
C ⊂ TC. The setT¶

C is called thecharacteristic
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distribution of a co-isotropic submanifoldC ⊂ P . The characteristic distribution is
Frobenius integrable. Its integral foliation is called thecharacteristic foliationof C. A co-
isotropic submanifold of the phase space is called afirst-class constraint set. A submanifold
C ⊂ P is called asecond-class constraint setif the symplectic formω restricted toC is non-
degenerate. These terms are consistent with Dirac’s terminology. A submanifoldC ⊂ P is
said to beLagrangianif T¶

C = TC. For an intrinsic definition of the class of a submanifold
of a symplectic manifold see [7].

4. Affine symplectic spaces

An affine spaceis a triple (M, V, µ), whereM is a set,V is a real vector space of finite
dimension andµ is a mappingµ: M × M → V such that

(1) µ(x3, x2) + µ(x2, x1) + µ(x1, x3) = 0;
(2) the mappingµ(·, x): M → V is bijective for eachx ∈ M.

The setM is said to be an affine spacemodelledon the vector spaceV .
The tangent bundleTM of an affine spaceM is identified withM × V . The cotangent

bundle T∗
M is identified withM × V ∗ and the tangent bundleTT∗

M is identified with
M × V ∗ × V × V ∗.

The cotangent bundleT∗
M is a symplectic affine space. The canonical symplectic form

ω is defined by

〈(x, p, ẋ, ṗ) ∧ (x, p, δx, δp), ω〉 = 〈δx, ṗ〉 − 〈ẋ, δp〉 (11)

for vectors(x, p, ẋ, ṗ) and(x, p, δx, δp) in TT∗
M.

5. Implicit differential equations of analytical mechanics

An implicit first-order differential equationin a differential manifoldP is a subsetD of the
tangent bundleTP usually assumed to be a submanifold. A curveγ : I → P is called a
solution of a differential equationD ⊂ TP if tγ (s) ∈ D for eachs ∈ I ⊂ R.

The phase space of a mechanical system is a symplectic manifold(P, ω). Implicit
differential equations of analytical mechanics are submanifolds of the tangent bundleTP of
the phase space. Three types of differential equations are encountered in modern analytical
mechanics.

Let H : P → R be a differentiable function on the phase spaceP . The set

D = {w ∈ TP ; p = τP (w), ∀u∈TpP 〈u ∧ w, ω〉 = 〈u, dH 〉} (12)

is the image of the Hamiltonian vector field

X: P → TP (13)

characterized by

iXω = −dH. (14)

This is the simplest type of a differential equation of analytical mechanics called a
Hamiltonian system. The image of a vector field is called anexplicit differential equation.
Explicit differential equations are integrable in the sense defined in the next section.

Let C ⊂ P be a submanifold of the phase space and letH : C → R be a differentiable
function. The set

D = {w ∈ TP ; p = τP (w) ∈ C, ∀u∈TpC〈u ∧ w, ω〉 = 〈u, dH 〉} (15)
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is a generalized Hamiltonian system[10] known as aDirac system. Truly implicit
differential equations of this type appear in gauge independent formulations of the dynamics
of charged particles [7].

Let η: Y → P be a differential fibration and letG: Y → R be a differentiable function
interpreted as a family of functions defined on fibres ofη. Under certain regularity conditions
the set

D = {w ∈ TP ; ∃y∈YτP (w)
∀u∈TyY 〈Tη(u) ∧ w, ω〉 = 〈u, dG〉} (16)

is a submanifold ofTP of dimension equal to the dimension ofP . In this case the function
G is called aMorse family of functions on fibres ofη and is represented by the diagram

Y
G−−−−−→ R

η

y
P

(17)

The implicit differential equationD will be called ageneralized Dirac systemgenerated by
the Morse familyG.

The intrinsic form of the regularity condition is somewhat complicated. We denote by
VY the vertical subbundledefined by

VY = {v ∈ TY ; Tη(v) = 0}. (18)

The critical set for a family G: Y → R is the set

S(G, η) = {y ∈ Y ; ∀v∈VyY 〈v, dG〉 = 0}. (19)

At each pointy ∈ S(G, η) we define a bilinear mapping

W(G, y): VyY × TyY → R
: (v, w) 7→ D(1,1)(G ◦ χ)(0, 0) (20)

whereχ is a mapping fromR2 to Y such thatv = tχ(·, 0)(0) and w = tχ(0, ·)(0). The
symbolD(1,1) denotes the second partial derivative∂2/∂s∂t of a function of two variables
(s, t) ∈ R2. The family G is a Morse family if the rank ofW(G, y) is maximal at each
y ∈ S(G, η). In terms of Darboux coordinates(xκ, pλ) in P and adapted coordinates
(xκ, pλ, y

A) in Y the mappingW(G, y) is represented by the matrix[
∂2G

∂yA∂yB
,

∂2G

∂yA∂xκ
,

∂2G

∂yA∂pλ

]
. (21)

The rank of this matrix must be maximal at points of the critical setS(G, η) [11]. The
coordinates(xκ, pλ, ẋ

µ, ṗν) of an element of the generalized Dirac system (16) satisfy
equations

ẋµ = ∂G

∂pµ

ṗν = − ∂G

∂xν

∂G

∂yA
= 0 (22)

for some values of the coordinates(yA).

Example 1. Let P = R4 and letTP be identified withR8. Let

G: P × R2 → R
: (x, y, p, q, λ, µ) 7→ λ4 − 6λ2 − λx + µq + y2 + p (23)
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and letη: P × R2 → P be the canonical projection. The family

P × R2
G−−−−−→ R

η

y
P

(24)

is a Morse family. The critical set forG is the set

S(G, η) = {(x, y, p, q, λ, µ) ∈ P × R2; 4λ3 − 12λ − x = 0, q = 0}. (25)

The mappingW(G, (x, y, p, q, λ, µ)) is represented by the matrix[ ∂2G
∂λ2

∂2G
∂λ∂µ

∂2G
∂λ∂x

∂2G
∂λ∂y

∂2G
∂λ∂p

∂2G
∂λ∂q

∂2G
∂µ∂λ

∂2G
∂µ2

∂2G
∂µ∂x

∂2G
∂µ∂y

∂2G
∂µ∂p

∂2G
∂µ∂q

]
=

[
12λ2 − 12 0 −1 0 0 0

0 0 0 0 0 1

]
. (26)

This matrix is of rank 2 at each point(x, y, p, q, λ, µ) ∈ S(G, η).
The generalized Dirac system generated byG is the implicit differential equation

D = {(x, y, p, q, ẋ, ẏ, ṗ, q̇) ∈ TP ; q = 0, ẋ − 1 = 0, 4ṗ3 − 12ṗ − x = 0, q̇ + 2y = 0}.
(27)

Example 2. Let P = R2 and letTP be identified withR4. The family of functions

G: P × R → R
: (x, p, λ) 7→ λ3 − 3λ2 − λx − p2 (28)

defined on fibres of the canonical projectionη: P × R → P is a Morse family. The critical
set forG is the set

S(G, η) = {(x, p, λ) ∈ P × R; 3λ2 − 6λ − x = 0}. (29)

The mappingW(G, (x, p, λ)) is represented by the matrix

[ ∂2G
∂λ2 , ∂2G

∂λ∂x
, ∂2G

∂λ∂p
] = [6λ − 6, −1, 0]. (30)

This matrix is of rank 1 at each point(x, p, λ) ∈ S(G, η).
The family G generates the generalized Dirac system

D = {(x, p, ẋ, ṗ) ∈ TP ; ẋ + 2p = 0, 3ṗ2 − 6ṗ − x = 0}. (31)

It is known that the tangent bundleTP together with the derived 2-form dT ω form
a symplectic manifold(TP, dT ω) [9, 10]. All types of implicit differential equations of
analytical mechanics are Lagrangian submanifolds of this symplectic manifold.

Most Dirac systems are also generalized Dirac systems. LetW be a vector space and let
K: P → W be a differentiable mapping such thatC = K−1(0) is a submanifold ofP . Let
H̃ : P → R be a differentiable function. The Dirac system (15) generated by the function
H = H̃ |C is a generalized Dirac system generated by the Morse family

P × W ∗ G−−−−−→ R

η

y
P

(32)

whereG is the function

G: P × W ∗ → R
: (p, λ) 7→ H̃ (p) + 〈K(p), λ〉 (33)
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and

η: P × W ∗ → P

: (p, λ) 7→ p (34)

is the canonical projection. The representation of Dirac systems as generalized Dirac systems
provides an unification of the analysis of integrability. The constraint setC may not be
representable globally in the formC = K−1(0). In this case the Dirac system (15) is still
a union of generalized Dirac systems.

6. Integrability of implicit differential equations

An implicit differential equationD ⊂ TP is said to beintegrable if for eachv ∈ D there
is a solutionγ : I → P such thattγ (0) = v.

Proposition 1. If D ⊂ TP is integrable, then

D ⊂ T(τP (D)). (35)

Proof. Let v ∈ D and letγ : I → P be a solution ofD such thattγ (0) = v. For each
s ∈ I we havetγ (s) ∈ D. It follows that γ (s) ∈ τP (D) for eachs ∈ I . Consequently
tγ (s) ∈ T(τP (D)) for eachs ∈ I andv = tγ (0) ∈ T(τP (D)). �

Proposition 2. If C = τP (D) is a submanifold ofP and if the mapping

τ : D → C

: v 7→ τP (v) (36)

is a surjective submersion, then the conditionD ⊂ TC is sufficient for integrability of the
implicit differential equationD ⊂ TP .

Proof. Let v be an element ofD and let p = τP (v). Let σ : C → D be a (local)
section ofτ : D → C such thatσ(p) = v. If ε: D → TC is the canonical injection, then
X = ε ◦ σ : C → TC is a section ofτC : TC → C, hence a vector field onC. Let γ : I → C

be an integral curve ofX such thatγ (0) = p. Then im(tγ ) ⊂ D and tγ (0) = X(p) = v.�

An implicit differential equationD ⊂ TP is said to beintegrableat v ∈ D if there is a
solutionγ : I → P of D such thattγ (0) = v. The set

D̃ = {v ∈ D; D is integrable atv} (37)

is called theintegrable part of D. The implicit equationD is integrable if and only if
D = D̃.

Proposition 3. The integrable part̃D of a differential equationD ⊂ TP is an integrable
differential equation.

Proof. Let v ∈ D̃ and letγ : I → P be a solution ofD such thattγ (0) = v. For each
s ∈ I the curve

γ (· + s): I − s → P

: t 7→ γ (t + s) (38)

is a solution ofD. Hence,tγ (s) ∈ D̃. It follows that D̃ is integrable. �
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We have the obvious relations

D̃ ⊂ T(τP (D̃)) ⊂ T(τP (D)) (39)

and

D̃ ⊂ D ∩ T(τP (D)). (40)

Proposition 4. If D̃ is the integrable part of a differential equationD ⊂ TP andD′ is a
subset ofD such thatD̃ ⊂ D′, thenD̃ is the integrable part ofD′.

Proof. If D′ ⊂ D andD′ is integrable atv, thenv ∈ D̃ since a solution ofD′ is a solution
of D. Hence,D̃′ ⊂ D̃. If D̃ ⊂ D′, thenD′ is integrable at eachv ∈ D̃. Hence,D̃ ⊂ D̃′.�

Propositions 2 and 4 suggest a simple algorithm for extracting the integrable part of a
sufficiently regular implicit differential equation without actually solving the equation.

Let D ⊂ TP be an implicit differential equation. We consider the sequence of sets

C0 = τP (D), C1 = τP (D ∩ TC0), . . . , Ck = τP (D ∩ TCk−1), . . . (41)

and the sequence of differential equations

D0 = D, D1 = D ∩ TC0, . . . , Dk = D ∩ TCk−1, . . . . (42)

It follows from τP (TCk) = Ck that Ck+1 = τP (D ∩ TCk) ⊂ Ck for each k > 0.
Consequently,Dk+1 ⊂ Dk for eachk > 0. It is easily seen that the integrable partD̃

of D is the integrable part of all equations in the sequence (42). It may happen that after
a finite number of steps the sets in the sequence (41) are all equal to a setC. This set
satisfies the equality

C = τP (D ∩ TC). (43)

If the differential equationD = D ∩ TC is integrable, then it is the integrable part ofD.
The following proposition implies that for a sufficiently regular differential equation in

a finite-dimensional spaceP the sets in the sequence (41) after a finite number of steps are
all equal to a setC.

Proposition 5. If Ck andCk−1 are submanifolds ofP of the same dimension, thenCl = Ck

for eachl > k.

Proof. If p ∈ Ck, then the setD ∩ TpCk−1 is not empty. IfCk has the same dimension as
Ck−1, thenTpCk = TpCk−1 sinceCk is an open submanifold ofCk−1. Consequently the
setD ∩ TpCk is not empty andp ∈ Ck+1. This implies thatCk+1 = Ck. Hence,Cl = Ck

for eachl > k. �

If the equationD is sufficiently regular, then the equationD is integrable sinceC is a
submanifold ofP and the mapping

τ̄ : D ∩ TC → C

: v 7→ τP (v) (44)

is a surjective submersion.
The present integrability algorithm is a modification of the algorithm described in [6].
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Example 3. The implicit differential equation

D = {(x, y, p, q, ẋ, ẏ, ṗ, q̇) ∈ TP ; q = 0, ẋ − 1 = 0, 4ṗ3 − 12ṗ − x = 0, q̇ + 2y = 0}
(45)

of example 1 is not integrable. The extraction algorithm sequence

C0 = {(x, y, p, q) ∈ P ; q = 0} (46)

TC0 = {(x, y, p, q, ẋ, ẏ, ṗ, q̇) ∈ TP ; q = 0, q̇ = 0} (47)

D ∩ TC0 = {(x, y, p, q, ẋ, ẏ, ṗ, q̇) ∈ TP ; y = 0, q = 0, ẋ − 1 = 0,

4ṗ3 − 12ṗ − x = 0, q̇ = 0} (48)

C1 = {(x, y, p, q) ∈ P ; y = 0, q = 0} (49)

TC1 = {(x, y, p, q, ẋ, ẏ, ṗ, q̇) ∈ TP ; y = 0, q = 0, ẏ = 0, q̇ = 0} (50)

D ∩ TC1 = {(x, y, p, q, ẋ, ẏ, ṗ, q̇) ∈ TP ; y = 0, q = 0, ẋ − 1 = 0,

4ṗ3 − 12ṗ − x = 0, ẏ = 0, q̇ = 0} (51)

C2 = C1 (52)

terminates withC = C1 andD = D∩TC1. The differential equationD is not the integrable
part ofD since it is not integrable. The criterion of proposition 2 in [6] is not satisfied. An
improved version of the algorithm is suggested by this proposition. LetD be represented
as the union

D = D+ ∪ D− (53)

of

D+ = {(x, y, p, q, ẋ, ẏ, ṗ, q̇) ∈ TP ; ẋ − 1 = 0, 4ṗ3 − 12ṗ − x = 0, q = 0, q̇ + 2y = 0,

ṗ > −1/2} (54)

and

D− = {(x, y, p, q, ẋ, ẏ, ṗ, q̇) ∈ TP ; ẋ − 1 = 0, 4ṗ3 − 12ṗ − x = 0, q = 0, q̇ + 2y = 0,

ṗ < 1/2}. (55)

The extraction algorithm applied to the componentD+ produces the sequence

C0
+ = {(x, y, p, q) ∈ P ; x > −8, q = 0} (56)

TC0
+ = {(x, y, p, q, ẋ, ẏ, ṗ, q̇) ∈ TP ; x > −8, q = 0, q̇ = 0, ẋ = 0 if x = −8} (57)

D+ ∩ TC0
+ = {(x, y, p, q, ẋ, ẏ, ṗ, q̇) ∈ TP ; x > −8, y = 0, q = 0, ẋ − 1 = 0, ṗ > −1/2,

4ṗ3 − 12ṗ − x = 0, q̇ = 0} (58)

C1
+ = {(x, y, p, q) ∈ P ; x > −8, y = 0, q = 0} (59)

TC1
+ = {(x, y, p, q, ẋ, ẏ, ṗ, q̇) ∈ TP ; x > −8, y = 0, q = 0, ẏ = 0, q̇ = 0} (60)

D+ ∩ TC1
+ = {(x, y, p, q, ẋ, ẏ, ṗ, q̇) ∈ TP ; x > −8, y = 0, q = 0, ẋ − 1 = 0, ṗ > −1/2,

4ṗ3 − 12ṗ − x = 0, ẏ = 0, q̇ = 0} (61)

C2
+ = C1

+ (62)

terminating withC+ = C1
+ andD+ = D+ ∩ TC1

+. For D− we have

C− = {(x, y, p, q) ∈ P ; x < 8, y = 0, q = 0} (63)
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and

D− = {(x, y, p, q, ẋ, ẏ, ṗ, q̇) ∈ TP ; x < 8, y = 0, q = 0, ẋ − 1 = 0, ṗ < 1/2,

4ṗ3 − 12ṗ − x = 0, ẏ = 0, q̇ = 0}. (64)

EquationsD+ andD− are integrable. The unionD+ ∪ D− is the integrable part̃D of D.
Dirac represented his generalized Hamiltonian systems as affine spaces of Hamiltonian

vector fields restricted to constraint sets. This description does not apply to the differential
equationD̃ = D+ ∪ D− obtained by the improved algorithm. It is also clear that in this
example the integrability algorithm is applied to the differential equation itself and not
to its constraint set. The frequently used term ‘constraint algorithm’ is in our opinion
misleading.

Example 4. A different anomaly of an implicit differential equation is present in the implicit
differential equation

D = {(x, p, ẋ, ṗ) ∈ TP ; ẋ + 2p = 0, 3ṗ2 − 6ṗ − x = 0} (65)

of example 2. This equation is not integrable. The basic extraction algorithm produces the
sequence

C0 = {(x, p) ∈ P ; x > −3} (66)

TC0 = {(x, p, ẋ, ṗ) ∈ TP ; x > −3, ẋ = 0 if x = −3} (67)

D ∩ TC0 = {(x, p, ẋ, ṗ) ∈ TP ; ẋ = 0 if x = −3, ẋ + 2p = 0, 3ṗ2 − 6ṗ − x = 0} (68)

C1 = {(x, p) ∈ P ; x > −3, p = 0 if x = −3} (69)

TC1 = {(x, p, ẋ, ṗ) ∈ TP ; x > −3, p = 0 andẋ = 0 if x = −3} (70)

D ∩ TC1 = D ∩ TC0 (71)

terminating withC = C1 andD = D∩TC0. The differential equationD is not integrable at
the point(x, p, ẋ, ṗ) = (−3, 0, 0, 1). The necessary integrability condition of proposition 4
in [6] is not met. The following operation is suggested by this proposition. The integrable
part D̃ of D is obtained as the projection

D̃ = τTP (τTTP (TTD ∩ T3
P))

= {(x, p, ẋ, ṗ) ∈ TP ; x > −3, ẋ + 2p = 0, 3ṗ2 − 6ṗ − x = 0} (72)

of the formal prolongation

TTD ∩ T3
P = {(x, p, ẋ, ṗ, ẍ, p̈,

...
x,

...
p) ∈ T3

P ; ẋ = 0 if x = −3, ẋ + 2p = 0,

3ṗ2 − 6ṗ − x = 0, ẍ + 2ṗ = 0, 6ṗp̈ − 6p̈ − ẋ = 0,
...
x +2p̈ = 0,

6p̈2 + 6ṗp̈ − 6
...
p −ẍ = 0} (73)

of D.

Implicit differential equations in the above examples are generalized Dirac systems. The
initial analysis of their integrability can be performed in terms of their generating Morse
families using an adaptation of the extraction algorithm described in section 8. We have
not adapted the modified algorithms used in these examples to generalized Dirac systems
since we do not know examples of anomalous systems with physical interpretations.



286 G Marmo et al

7. Integrability of Dirac systems

Let (P, ω) be a symplectic phase space of a mechanical system and let

D = {w ∈ TP ; p = τP (w) ∈ C, ∀u∈TpC〈u ∧ w, ω〉 = 〈u, dH 〉} (74)

be a Dirac system generated by a HamiltonianH : C → R defined on a submanifoldC ⊂ P .
The set

Dp = {w ∈ TpP ; ∀u∈TpC〈u ∧ w, ω〉 = 〈u, dH 〉} (75)

is an affine subspace ofTpP modelled on the vector subspace

T¶
pC = {w ∈ TpP ; ∀u∈TpC〈u ∧ w, ω〉 = 0}. (76)

The imageτP (D) is the submanifoldC. The mappingτ defined in formula (36) is a
submersion since local sections of this mapping are easily constructed. It follows that the
conditionD ⊂ TC is sufficient for integrability of the Dirac systemD.

For the spaceTpC we use the representation

TpC = (T¶
pC)¶

= {w ∈ TpP ; ∀u∈T¶
pC〈u ∧ w, ω〉 = 0}. (77)

We denote by ker(dH(p)) the space

{u ∈ TpP ; u ∈ TpC, 〈u, dH 〉 = 0}. (78)

Lemma 1. If T¶
pC ⊂ ker(dH(p)), thenDp ⊂ TpC.

Proof. Let w ∈ Dp. From the definition (75) we have〈u ∧ w, ω〉 = 〈u, dH 〉 for each
u ∈ TpC. If T¶

pC ⊂ ker(dH(p)), then 〈u ∧ w, ω〉 = 0 for eachu ∈ T¶
pC. Hence,

w ∈ (T¶
pC)¶ = TpC. �

Lemma 2. If Dp ⊂ TpC, thenT¶
pC ⊂ TpC.

Proof. Let v ∈ T¶
pC. If w ∈ Dp, thenw + v ∈ Dp sinceDp is an affine space modelled

on T¶
pC. If Dp ⊂ TpC, thenw ∈ TpC andw + v ∈ TpC. Hence,v ∈ TpC. �

Lemma 3. If Dp ⊂ TpC, thenT¶
pC ⊂ ker(dH(p)).

Proof. If Dp ⊂ TpC, thenDp ∩ TpC is not empty. Ifw ∈ Dp ∩ TpC andu ∈ TpC ∩ T¶
pC,

then〈u, dH 〉 = 〈u∧w, ω〉 = 0 sinceu ∈ TpC andw ∈ T¶
pC. It follows thatu ∈ ker(dH(p)).

�

Theorem 1. A Dirac system

D = {w ∈ TP ; p = τP (w) ∈ C, ∀u∈TpC〈u ∧ w, ω〉 = 〈u, dH 〉} (79)

is integrable if and only if the submanifoldC ⊂ P is co-isotropic and the Hamiltonian
function H : C → R is constant on leaves of the characteristic foliation ofC.

Proof.
(1) If C is co-isotropic andH is constant on leaves of the characteristic foliation ofC,

then T¶
pC ⊂ ker(dH(p)) for eachp ∈ C. By lemma 1 this impliesDp ⊂ TpC for each

p ∈ C. Hence,D is integrable.
(2) If D is integrable, thenDp ⊂ TpC for eachp ∈ C. By lemma 2 and lemma 3 this

implies thatC is co-isotropic andH is constant on leaves of the characteristic foliation of
C. �
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If the Dirac systemD is not integrable, then the algorithm for extracting its integrable
part can be tried. An adaptation of this algorithm to Dirac systems is described in [6].

8. Integrability of generalized Dirac systems

Let

Y
G−−−−−→ R

η

y
P

(80)

be a Morse family generating the implicit differential equation

D = {w ∈ TP ; ∃y∈YτP (w)
∀u∈TyY 〈Tη(u) ∧ w, ω〉 = 〈u, dG〉}. (81)

The set

S = {y ∈ Y ; ∀u∈TyY Tη(u) = 0 ⇒ 〈u, dG〉 = 0} (82)

is called thecritical set and the set

C = {p ∈ P ; ∃y∈Yp
∀u∈TyY Tη(u) = 0 ⇒ 〈u, dG〉 = 0} (83)

is called theconstraint set. The setsD, S andC are related by

C = τP (D) = η(S). (84)

The algorithm described in section 5 produces a sequence of sets

C0, C1, . . . , Ck, . . . , (85)

where

C0 = C (86)

and

Ck = {p ∈ P ; p ∈ Ck−1 and∃y∈Yp
∀u∈TyY Tη(u) ∈ T¶

pCk−1 ⇒ 〈u, dG〉 = 0} (87)

for k > 0. The terminal constraint setC is the set

C = {p ∈ P ; ∃y∈Yp
∀u∈TyY Tη(u) ∈ T¶

pC ⇒ 〈u, dG〉 = 0}. (88)

The terminal critical setS and the terminal equationD are the sets

S = {y ∈ Y ; p = η(y) ∈ C and∃y∈Yp
∀u∈TyY Tη(u) ∈ T¶

pC ⇒ 〈u, dG〉 = 0} (89)

and

D = {w ∈ TP ; p = τP (w) ∈ C and∃y∈Sp
∀u∈TyY 〈Tη(u) ∧ w, ω〉 = 〈u, dG〉}. (90)

We have the relation

D = D ∩ TC. (91)

This version of the extraction algorithm can be applied to a Dirac system represented
by the Morse family (32). This is an alternative to the direct application of the procedure
used in [6]. IfC1 = C0, then the Dirac system is integrable.
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9. Examples

Example 5. It is possible to give the dynamics of a non-relativistic particle of massm and
chargee a gauge independent form in a four-dimensional configuration space analogous to
the five-dimensional space of Kaluza. The dynamics is an integrable Dirac system described
in [7]. This is the only true finite-dimensional Dirac system related to physics known to us.

Example 6. Let V be an Euclidean vector space with a metric tensorg: V → V ∗. The
implicit differential equation [4]

D = {(x, p, ẋ, ṗ) ∈ V × V ∗ × V × V ∗; x 6= 0, p = k(‖x‖2g(ẋ) − 〈ẋ, g(x)〉g(x))

ṗ = k(‖ẋ‖2g(x) − 〈ẋ, g(x)〉g(ẋ))} (92)

is a Dirac system generated by the Hamiltonian

H : C → R

: (x, p) 7→ ‖p‖2

2k‖x‖2
(93)

defined on the constraint set

C = {(x, p) ∈ V × V ∗; x 6= 0, 〈x, p〉 = 0}. (94)

This system can be presented as a generalized Dirac system generated by the Morse family

V̊ × V ∗ × R
G−−−−−→ R

η

y
V̊ × V ∗

(95)

where

V̊ = {x ∈ V ; x 6= 0} (96)

andG is the function

G: V̊ × V ∗ × R → R

: (x, p, λ) 7→ ‖p‖2

2k‖x‖2
+ λ〈x, p〉 (97)

and

η: V̊ × V ∗ × R → V̊ × V ∗

: (x, p, λ) 7→ (x, p) (98)

is the canonical projection.
The system is not integrable. The integrable partD is obtained through the following

steps:

C0 = {(x, p) ∈ V̊ × V ∗; 〈x, p〉 = 0} (99)

TC0 = {(x, p, δx, δp) ∈ V̊ × V ∗ × V × V ∗; 〈x, p〉 = 0, 〈δx, p〉 + 〈x, δp〉 = 0} (100)

T¶
C0 =

{
(x, p, δx, δp) ∈ V̊ × V ∗ × V × V ∗; 〈x, p〉 = 0, δx = 〈δx, g(x)〉

‖x‖2
x,

δp = −〈δx, g(x)〉
‖x‖2

p

}
(101)

C1 = {(x, p) ∈ V̊ × V ∗; p = 0} (102)
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TC1 = {(x, p, δx, δp) ∈ V̊ × V ∗ × V × V ∗; p = 0, δp = 0} (103)

T¶
C1 = TC1 (104)

C2 = C1 = C (105)

and

D =
{
(x, p, ẋ, ṗ) ∈ V̊ × V ∗ × V × V ∗; p = 0, ẋ = 〈ẋ, g(x)〉

‖x‖2
x, ṗ = 0

}
. (106)

Solutions are curves of the form

γ : R → V̊ × V ∗

: t 7→ (f (t)u, 0) (107)

whereu ∈ V̊ andf is a function such thatf (t) 6= 0.

Example 7. Let (M, V, µ) be the affine spacetime of special relativity with the Minkowski
metric g: V → V ∗. Dynamics of a free particle of massm is the generalized Dirac system

D =
{
(x, p, ẋ, ṗ) ∈ M × V ∗ × V × V ∗; 〈g−1(p), p〉 > 0, ṗ = 0, ∃λ∈R+ ẋ = λ

m
g−1(p)

}
=

{
(x, p, ẋ, ṗ) ∈ M × V ∗ × V × V ∗; 〈ẋ, g(ẋ)〉 > 0, p = m

‖ẋ‖g(ẋ), ṗ = 0

}
(108)

generated by the Morse family

M × K∗ × R+
G−−−−−→ R

η

y
M × K∗

(109)

where

K∗ = {p ∈ V ∗; 〈g−1(p), p〉 > 0} (110)

η: M × K∗ × R+ → M × K∗
: (x, p, λ) 7→ (x, p) (111)

is the canonical projection and

G: M × K∗ × R+ → R
: (x, p, λ) 7→ λ (‖p‖ − m) . (112)

The set

S = {(x, p, λ) ∈ M × K∗ × R+; ‖p‖ = m} (113)

is the critical set for the Morse family and the mass shell

C = {(x, p) ∈ M × K∗; ‖p‖ = m} (114)

is the constraint set. We have

C0 = C (115)

TC0 = {(x, p, ẋ, ṗ) ∈ M × K∗ × V × V ∗; ‖p‖ = m, 〈g−1(p), ṗ〉 = 0} (116)

T¶
C0 =

{
(x, p, δx, δp) ∈ M × K∗ × V × V ∗; ‖p‖ = m, δx = 〈δx, p〉

m2
p, δp = 0

}
(117)
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and

C1 = C0. (118)

It follows that this generalized Dirac system is integrable. Solutions are oriented lines in
the affine phase spaceM × V ∗. Their orientation reflects the distinction between particles
and antiparticles introduced by Stueckelberg [8] and used by Feynman [3].

The present example shows that even the simplest dynamical systems of relativistic
mechanics are generalized Dirac systems. The equationD is derived from the Lagrangian

L: M × K → R
: (x, ẋ) 7→ m‖ẋ‖ (119)

where

K = {v ∈ V ; 〈v, g(v)〉 > 0}. (120)

Since the Lagrangian is homogeneous the system would be considered by some physicists as
a Dirac systemD′ with zero Hamiltonian defined on the mass shellC. This Dirac system
provides an incomplete description of relativistic dynamics—the Stueckelberg distinction
between particles and antiparticles is lost. The mass shell is co-isotropic since it is a
submanifold of codimension one. It follows from theorem 1 that the Dirac systemD′ is
integrable. An alternative proof of integrability ofD is obtained by observing thatD is an
open subset ofD′.

Example 8. We analyse the dynamics of two interacting relativistic particles formulated in
[12, 13]. Masses of the particles are denoted bym1 andm2. The interaction potential is a
function U of a real positive argument.

In addition to the notation of the preceding example we introduce symbols

N = {(x1, x2) ∈ M × M; 〈x2 − x1, g(x2 − x1)〉 < 0} (121)

P = N × K∗ × K∗ (122)

‖x2 − x1‖ =
√

−〈x2 − x1, g(x2 − x1)〉 (123)

for (x1, x2) ∈ N ,

m1 =
√

m2
1 + U(‖x2 − x1‖) (124)

and

m2 =
√

m2
2 + U(‖x2 − x1‖). (125)

Dynamics of the particles is a generalized Dirac system

D ⊂ M × M × V ∗ × V ∗ × V × V × V ∗ × V ∗ (126)

generated by the Morse family

P × R+ × R+
G−−−−−→ R

η

y
P

(127)

where

η: P × R+ × R+ → P

: (x1, x2, p1, p2, λ1, λ2) 7→ (x1, x2, p1, p2) (128)
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is the canonical projection and

G: P × R+ × R+ → R
: (x1, x2, p1, p2, λ1, λ2) 7→ λ1(‖p1‖ − m1) + λ2(‖p2‖ − m2). (129)

The systemD is the set of vectors(x1, x2, p1, p2, ẋ1, ẋ2, ṗ1, ṗ2) in M × M × V ∗ × V ∗ ×
V × V × V ∗ × V ∗ satisfying relations

〈x2 − x1, g(x2 − x1)〉 < 0 (130)

〈ẋ1, g(ẋ1)〉 > 0 〈ẋ2, g(ẋ2)〉 > 0 (131)

p1 = m1
g(ẋ1)

‖ẋ1‖ (132)

p2 = m2
g(ẋ2)

‖ẋ2‖ (133)

ṗ1 = DU(‖x2 − x1‖)
2‖x2 − x1‖

(‖ẋ1‖
m1

+ ‖ẋ2‖
m2

)
g(x2 − x1) (134)

ṗ1 + ṗ2 = 0. (135)

The systemD is not integrable. The initial constraint setC0 is the set of covectors
(x1, x2, p1, p2) ∈ P satisfying equations

‖p1‖ = m1 (136)

‖p2‖ = m2. (137)

The tangent setTC0 is the set of vectors(x1, x2, p1, p2, ẋ1, ẋ2, ṗ1, ṗ2) ∈ P × V × V ×
V ∗ × V ∗ satisfying equations

‖p1‖ = m1 (138)

‖p2‖ = m2 (139)

2〈g−1(p1), ṗ1〉 + DU(‖x2 − x1‖)
‖x2 − x1‖ 〈ẋ2 − ẋ1, g(x2 − x1)〉 = 0 (140)

2〈g−1(p2), ṗ2〉 + DU(‖x2 − x1‖)
‖x2 − x1‖ 〈ẋ2 − ẋ1, g(x2 − x1)〉 = 0. (141)

The setT¶
C0 is composed of vectors(x1, x2, p1, p2, δx1, δx2, δp1, δp2) ∈ P ×V ×V ×

V ∗ × V ∗ satisfying equations

‖p1‖ = m1 (142)

‖p2‖ = m2 (143)

δx1 = 2k1g
−1(p1) (144)

δx2 = 2k2g
−1(p2) (145)

δp1 = (k1 + k2)
DU(‖x2 − x1‖)

2‖x2 − x1‖ g(x2 − x1) (146)

and

δp1 + δp2 = 0 (147)

with arbitrary values of the parametersk1 andk2.
The constraint setC1 is the set of covectors(x1, x2, p1, p2) ∈ P satisfying the equation

〈x2 − x1, p1 + p2〉 = 0 (148)

in addition to relations (136) and (137).
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The tangent setTC1 is the set of vectors(x1, x2, p1, p2, ẋ1, ẋ2, ṗ1, ṗ2) ∈ P × V × V ×
V ∗ × V ∗ satisfying equations

〈x2 − x1, p1 + p2〉 = 0 (149)

and

〈ẋ2 − ẋ1, p1 + p2〉 + 〈x2 − x1, ṗ1 + ṗ2〉 = 0 (150)

in addition to equations (138)–(141).
The setT¶

C1 is composed of vectors(x1, x2, p1, p2, δx1, δx2, δp1, δp2) ∈ P ×V ×V ×
V ∗ × V ∗ satisfying equations

δx1 = 2k1g
−1(p1) + k3(x2 − x1) (151)

δx2 = 2k2g
−1(p2) + k3(x2 − x1) (152)

δp1 = (k1 + k2)
DU(‖x2 − x1‖)

2‖x2 − x1‖ g(x2 − x1) + k3(p1 + p2) (153)

and

δp1 + δp2 = 0 (154)

with arbitrary values of the parametersk1, k2 and k3 in addition to equations (142) and
(143).

The setC2 is the same asC1. HenceC = C1. The integrable partD of D is the set of
vectors(x1, x2, p1, p2, ẋ1, ẋ2, ṗ1, ṗ2) in M × M × V ∗ × V ∗ × V × V × V ∗ × V ∗ satisfying
relations

〈x2 − x1, g(x2 − x1)〉 < 0 (155)

〈ẋ1, g(ẋ1)〉 > 0 〈ẋ2, g(ẋ2)〉 > 0 (156)

p1 = m1
g(ẋ1)

‖ẋ1‖ (157)

p2 = m2
g(ẋ2)

‖ẋ2‖ (158)

ṗ1 = DU(‖x2 − x1‖)
2‖x2 − x1‖

(‖ẋ1‖
m1

+ ‖ẋ2‖
m2

)
g(x2 − x1) (159)

ṗ1 + ṗ2 = 0 (160)

and

〈ẋ2 − ẋ1, p1 + p2〉 = 0. (161)
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